Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-1-(4-Methoxybenzylidene)semicarbazide

Zu-Pei Liang,^a* Jian Li,^a Hong-Liang Wang^b and Hui-Qin Wang^a

^aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bWeifang Examination Centre of Boilers and Pressure Vessels, Weifang 261057, People's Republic of China Correspondence e-mail: zupeiliang@yahoo.com.cn

Received 11 May 2007; accepted 11 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.131; data-to-parameter ratio = 12.1.

In the crystal structure of the title compound, $C_9H_{11}N_3O_2$, the almost planar molecules interact by way of $N-H\cdots O$ hydrogen bonds.

Related literature

For a related structure, see Tai et al. (2007).

Experimental

Crystal data

 $C_9H_{11}N_3O_2$ $M_r = 193.21$ Monoclinic, $P2_1/c$ a = 13.811 (11) Å

b = 5.443 (4) Å
c = 12.912 (10) Å
$\beta = 97.933 \ (13)^{\circ}$
$V = 961.4 (13) \text{ Å}^3$

```
Z = 4
Mo K\alpha radiation
\mu = 0.10 \text{ mm}^{-1}
```

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\min} = 0.979, T_{\max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.131$ S = 1.031698 reflections 140 parameters 4 restraints T = 294 (2) K $0.22 \times 0.20 \times 0.10$ mm

4626 measured reflections 1698 independent reflections 1080 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.14 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.19 \text{ e } \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdotsO2^{i}$ $N2-H2A\cdotsO2^{ii}$	0.899 (9) 0.893 (9)	2.037 (10) 2.053 (10)	2.929 (3) 2.940 (3)	171.4 (19) 172.2 (19)
	. 1 . 5	(**)		

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{5}{2}$; (ii) -x, -y, -z + 2.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Doctoral Foundation of Weifang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2409).

References

- Bruker (1997). SADABS (Version 2.01), SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tai, X.-S., Hao, M.-Y., Yin, J. & Liang, Z.-P. (2007). Acta Cryst. E63, o1725– 01726.

supplementary materials

Acta Cryst. (2007). E63, o2939 [doi:10.1107/S1600536807023240]

(E)-1-(4-Methoxybenzylidene)semicarbazide

Z.-P. Liang, J. Li, H.-L. Wang and H.-Q. Wang

Comment

In this paper, the structure of the title compound, (I), is reported. The bond lengths and angles agree with those in a similar compound (*E*)-1-(4-Hydroxybenzylidene)semicarbazide hemihydrate (Tai *et al.*, 2007). The molecule is essentially planar, with a maximum deviation from the mean plane of 0.033 (4) Å for the non-hydrogen atoms. The crystal structure is stabilized by N—H···O hydrogen bonds (Fig. 2 and Table 2).

Experimental

A mixture of 4-methoxybenzaldehyde (0.01 mol) and semicarbazide hydrochloride (0.01 mol) in ethanol (10 ml) was refluxed for 1 h. After cooling, filtration and drying, the title compound was obtained. 10 mg of this compound was dissolved in ethanol (12 ml), and the solution was then allowed to evaporate at room temperature; light yellow single crystals of (I) were formed after 8 d.

Refinement

The N-bound H atoms were located in difference maps: their positions were refined with the restraint N—H = 0.89 (1) Å and their U_{iso} values were freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids (arbitrary spheres for the H atoms).

Fig. 2. The crystal packing of (I), viewed along the b axis. Hydrogen bonds are indicated by dashed lines.

(E)-1-(4-Methoxybenzylidene)semicarbazide

Crystal data C₉H₁₁N₃O₂

 $F_{000} = 408$

 $M_r = 193.21$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.811 (11) Åb = 5.443 (4) Åc = 12.912 (10) Å $\beta = 97.933 (13)^{\circ}$ $V = 961.4 (13) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	1698 independent reflections
Radiation source: fine-focus sealed tube	1080 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -16 \rightarrow 15$
$T_{\min} = 0.979, T_{\max} = 0.990$	$k = -4 \rightarrow 6$
4626 measured reflections	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difmap and geom
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_0^2) + (0.072P)^2 + 0.0049P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.004$
1698 reflections	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
140 parameters	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

 $D_{\rm x} = 1.335 \ {\rm Mg \ m}^{-3}$

Cell parameters from 1284 reflections

Mo Kα radiation

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.0-24.6^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 294 (2) K

Block, light yellow $0.22 \times 0.20 \times 0.10 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.41747 (12)	1.0943 (3)	0.72911 (13)	0.0620 (5)
O2	-0.00139 (11)	0.1030 (2)	1.13605 (10)	0.0443 (4)
N1	0.14797 (13)	0.4422 (3)	0.98921 (12)	0.0376 (5)
N2	0.08994 (13)	0.2555 (3)	1.01916 (13)	0.0408 (5)
N3	0.07790 (15)	0.4668 (3)	1.17129 (13)	0.0435 (5)
C1	0.26768 (16)	0.8148 (4)	0.90565 (16)	0.0426 (6)
H1	0.2498	0.8496	0.9709	0.051*
C2	0.32882 (17)	0.9721 (4)	0.86267 (17)	0.0463 (6)
H2	0.3522	1.1117	0.8994	0.056*
C3	0.35624 (16)	0.9253 (4)	0.76477 (17)	0.0420 (6)
C4	0.32198 (15)	0.7166 (4)	0.71071 (16)	0.0444 (6)
H4	0.3401	0.6826	0.6455	0.053*
C5	0.26042 (16)	0.5587 (4)	0.75450 (15)	0.0418 (6)
Н5	0.2373	0.4189	0.7177	0.050*
C6	0.23206 (16)	0.6034 (3)	0.85243 (15)	0.0356 (5)
C7	0.16913 (15)	0.4259 (3)	0.89599 (15)	0.0377 (5)
H7	0.1434	0.2958	0.8542	0.045*
C8	0.05186 (15)	0.2709 (3)	1.11155 (14)	0.0345 (5)
С9	0.4390 (2)	1.0650 (6)	0.62403 (19)	0.0804 (10)
H9A	0.4745	0.9148	0.6189	0.121*
H9B	0.4779	1.2010	0.6064	0.121*
H9C	0.3790	1.0597	0.5766	0.121*
H3A	0.0485 (14)	0.501 (4)	1.2275 (12)	0.062 (7)*
H2A	0.0686 (14)	0.140 (3)	0.9726 (13)	0.047 (6)*
H3B	0.1138 (15)	0.586 (3)	1.1490 (16)	0.064 (8)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0656 (13)	0.0628 (11)	0.0611 (11)	-0.0215 (8)	0.0210 (9)	0.0056 (8)
O2	0.0615 (11)	0.0435 (8)	0.0312 (8)	-0.0086 (7)	0.0183 (7)	0.0022 (6)
N1	0.0484 (12)	0.0398 (9)	0.0264 (9)	-0.0026 (8)	0.0117 (8)	0.0017 (7)
N2	0.0585 (13)	0.0401 (10)	0.0272 (9)	-0.0102 (9)	0.0179 (9)	-0.0034 (8)
N3	0.0603 (14)	0.0452 (11)	0.0274 (10)	-0.0055 (10)	0.0146 (9)	-0.0046 (8)
C1	0.0552 (15)	0.0431 (12)	0.0306 (11)	0.0027 (11)	0.0101 (11)	-0.0006 (9)
C2	0.0548 (16)	0.0401 (12)	0.0442 (13)	-0.0058 (11)	0.0080 (11)	-0.0054 (10)
C3	0.0430 (15)	0.0428 (12)	0.0417 (13)	-0.0028 (10)	0.0107 (11)	0.0085 (9)
C4	0.0513 (15)	0.0548 (14)	0.0295 (12)	-0.0043 (11)	0.0137 (10)	0.0023 (10)
C5	0.0497 (15)	0.0458 (12)	0.0311 (12)	-0.0046 (10)	0.0099 (10)	-0.0024 (9)
C6	0.0421 (14)	0.0383 (11)	0.0269 (11)	0.0020 (9)	0.0067 (10)	0.0038 (8)
C7	0.0451 (14)	0.0412 (11)	0.0275 (11)	-0.0006 (9)	0.0081 (10)	0.0010 (8)
C8	0.0443 (13)	0.0360 (11)	0.0239 (10)	0.0055 (9)	0.0072 (9)	0.0046 (8)

supplementary materials

С9	0.086 (2)	0.104 (2)	0.0543 (18)	-0.0391 (18)	0.0217 (16)	0.0196 (15)
Geometric paran	neters (Å, °)					
01 - C3		1 372 (2)	C2-	—C3		1 392 (3)
01 - 09		1.372(2) 1 437(3)	C2-	—H2	() 9300
$0^{2}-0^{8}$		1 241 (2)	C3-			1 382 (3)
N1-C7		1.211(2) 1.280(3)	C4-		-	1 383 (3)
N1—N2		1 382 (2)	C4	—H4	() 9300
N2-C8		1 371 (3)	C5-			1 396 (3)
N2—H2A		0.893 (9)	C5-	_H5	(0.9300
N3—C8		1.336 (3)	C6-	C7		1.463 (3)
N3—H3A		0.899 (9)	C7-	—H7	(0.9300
N3—H3B		0.886 (9)	С9-	—Н9А	(0.9600
C1—C2		1.372 (3)	C9-	—Н9В	(0.9600
C1—C6		1.395 (3)	С9-	—Н9С	(0.9600
C1—H1		0.9300				
C3-01-C9		117 38 (18)	C5-			120 3
C7-N1-N2		115 36 (17)	C4-	C5C6	-	121.8 (2)
C8—N2—N1		120.35 (16)	C4	—C5—H5		1191
C8—N2—H2A		119.9 (14)	C6-	—C5—H5		119.1
N1—N2—H2A		118.7 (13)	C1-			117.78 (19)
C8—N3—H3A		121.1 (13)	C1-			122.91 (19)
C8—N3—H3B		120.9 (13)	C5-			119.29 (18)
H3A—N3—H3B		116.4 (14)	N1-	C7C6		122.71 (19)
C2-C1-C6		120.7 (2)	N1	—С7—Н7		118.6
C2—C1—H1		119.7	C6-	—С7—Н7		118.6
С6—С1—Н1		119.7	02-			124.21 (18)
C1—C2—C3		120.8 (2)	02-			119.26 (17)
С1—С2—Н2		119.6	N3-			116.50 (19)
С3—С2—Н2		119.6	01-	—С9—Н9А		109.5
O1—C3—C4		124.45 (19)	01-	—С9—Н9В		109.5
O1—C3—C2		116.09 (19)	H9.	А—С9—Н9В		109.5
C4—C3—C2		119.46 (19)	01-	—С9—Н9С		109.5
C3—C4—C5		119.4 (2)	H9	А—С9—Н9С		109.5
С3—С4—Н4		120.3	H9	В—С9—Н9С		109.5
C7—N1—N2—C	8	-171.16(19)	C2-		-	-0.2 (3)
C6—C1—C2—C3	3	0.4 (3)	C2-			178.11 (19)
C9—O1—C3—C4	4	6.8 (3)	C4-	C5C6C1	(0.2 (3)
C9—O1—C3—C	2	-173.7 (2)	C4-	C5C6C7	-	-178.21 (19)
C1—C2—C3—O	1	179.93 (19)	N2	—N1—C7—C6		-178.17 (17)
C1—C2—C3—C4	4	-0.5 (3)	C1-			-5.3 (3)
O1—C3—C4—C	5	180.0 (2)	C5-			173.0 (2)
C2—C3—C4—C	5	0.5 (3)	N1-	N2C8O2		178.81 (18)
C3—C4—C5—C6	6	-0.3 (3)	N1-	—N2—C8—N3	-	-3.2 (3)
Hydrogen-bond s	geometry (Å, °)					
D—H···A		D	—Н	H···A	$D \cdots A$	D—H···A

supplementary materials

N3—H3A···O2 ⁱ	0.899 (9)	2.037 (10)	2.929 (3)	171.4 (19)		
N2—H2A···O2 ⁱⁱ	0.893 (9)	2.053 (10)	2.940 (3)	172.2 (19)		
Symmetry codes: (i) $-x$, $y+1/2$, $-z+5/2$; (ii) $-x$, $-y$, $-z+2$.						

Fig. 1

